53 research outputs found

    Physics Validation of LHC Simulations

    Get PDF
    A review of the strategy and the results for the physics validation of Geant4 and Fluka detector simulation engines for LHC applications is presented. The main focus is on hadronic physics, where most of the efforts are currently concentrated. In particular, comparisons between simulation and test-beam data for the most relevant calorimeter observables, for different experiments and detector technologies, are discussed

    New developments of the goodness-of-fit Statistical Toolkit

    Get PDF
    The Statistical Toolkit is a project for the development of open source software tools for statistical data analysis in experimental particle and nuclear physics. The second development cycle encompassed an extension of the software functionality and new tools to facilitate its usage in experimental environments. The new developments include additional goodness-of-fit tests, new implementations of existing tests to improve their statistical precision or computational performance, a new component to extend the usability of the toolkit with other data analysis systems, and new tools for an easier configuration and build of the system in the user's computing environment. The computational performance of all the algorithms implemented has been studied

    Optimizing Geant4 Hadronic Models

    Full text link
    Geant4, the leading detector simulation toolkit used in high energy physics, employs a set of physics models to simulate interactions of particles with matter across a wide range of energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and inclusive characteristics, and use physically motivated parameters. However, they generally aim to cover a broad range of possible simulation tasks and may not always be optimized for a particular process or a given material. The Geant4 collaboration recently made many parameters of the models accessible via a configuration interface. This opens a possibility to fit simulated distributions to the thin target experimental datasets and extract optimal values of the model parameters and the associated uncertainties. Such efforts are currently undertaken by the Geant4 collaboration with the goal of offering alternative sets of model parameters, also known as "tunes", for certain applications. The effort should subsequently lead to more accurate estimates of the systematic errors in physics measurements given the detector simulation role in performing the physics measurements. Results of the study are presented to illustrate how Geant4 model parameters can be optimized through applying fitting techniques, to improve the agreement between the Geant4 and the experimental data.Comment: 26th International Conference on Computing in High Energy & Nuclear Physics (CHEP 2023

    A Roadmap for HEP Software and Computing R&D for the 2020s

    Get PDF
    Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe

    Code-Testing of Statistical Test Implementations

    No full text

    Experiences on Grid production for Geant4

    No full text
    Geant4 is a general purpose toolkit for simulating the tracking and interaction of particles through matter. It is currently used in production in several particle physics experiments (BaBar, HARP, ATLAS, CMS, LHCb), and it has also applications in other areas, as space science, medical applications, and radiation studies. The complexity of the Geant4 code requires careful testing of all of its components, especially before major releases (which happens twice a year, in June and December). In this talk, I will describe the recent development of an automatic suite for testing hadronic physics in high energy calorimetry applications. The idea is to use a simplified set of hadronic calorimeters, with different beam particle types, and various beam energies, and comparing relevant observables between a given reference version of Geant4 and the new candidate one. Only those distributions that are statistically incompatible are then printed out and finally inspected by a person to look for possible bugs. The suite is made of Python scripts, and utilizes the "Statistical Toolkit" for the statistical tests between pair of distributions, and runs on the Grid to cope with the large amount of CPU needed in a short period of time. In fact, the total CPU time required for each of these Geant4 release validation productions amounts to about 4 CPU-years, which have to be concentrated in a couple of weeks. Therefore, the Grid environment is the natural candidate to perform this validation production. We have already run three of them, starting in December 2004. In the last production, in December 2005, we run as Geant4 VO, for the first time, demonstrating the full involvement of Geant4 inside the EGEE communities. Several EGEE sites have provided us with the needed CPU, and this has guaranteed the success of the production, arriving to an overall efficiency rate of about 99%. In the talk, emphasis will be given on our experiences in using the Grid, the results we got from

    Detector Simulation (1/1)

    No full text
    Simulation of particle interaction in a detector
    corecore